


# SCIENCE AND THE ENVIRONMENT

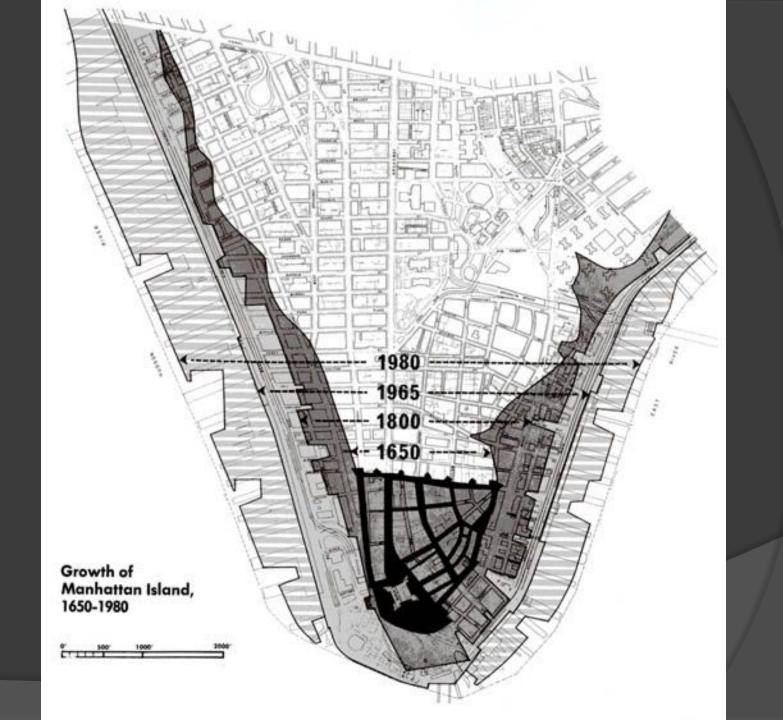
#### What Is Environmental Science?

- Biology is the study of the air, water, and land surrounding an organism or a community, which ranges from a small area to Earth's entire biosquare.
- **Goals-** to understand:
  - 1) How our actions alter our environment.
  - 2) The use of natural resources.



#### Many Fields of Study

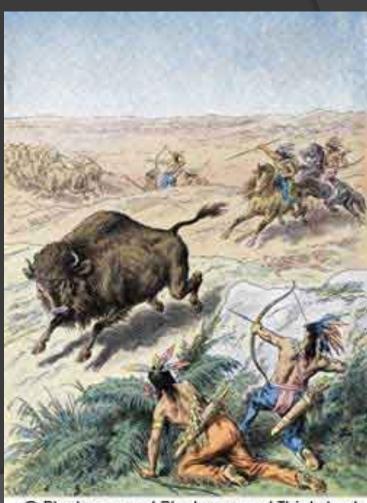
| Major Fields of Study That Contribute to Environmental Science                                         |                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Biology</b> is the study of living organisms.                                                       | <b>Zoology</b> is the study of animals.<br><b>Botany</b> is the study of plants.<br><b>Microbiology</b> is the study of microorganisms.<br><b>Ecology</b> is the study of how organisms interact with their environment and each other.                                                                                 |
| <b>Earth science</b> is the<br>study of the Earth's<br>nonliving systems and<br>the planet as a whole. | Geology is the study of the Earth's surface, interior processes, and history.<br>Paleontology is the study of fossils and ancient life.<br>Climatology is the study of the Earth's atmosphere and climate.<br>Hydrology is the study of Earth's water resources.                                                        |
| <b>Physics</b> is the study of matter and energy.                                                      | <b>Engineering</b> is the science by which matter and energy are made useful to humans in structures, machines, and products.                                                                                                                                                                                           |
| <b>Chemistry</b> is the study of chemicals and their interactions.                                     | <b>Biochemistry</b> is the study of the chemistry of living things.<br><b>Geochemistry</b> , a branch of geology, is the study of the chemistry of materials<br>such as rocks, soil, and water.                                                                                                                         |
| <b>Social sciences</b> are the study of human populations.                                             | <b>Geography</b> is the study of the relationship between human populations and Earth's features.<br><b>Anthropology</b> is the study of the interactions of the biological, cultural, geographical, and historical aspects of humankind.<br><b>Sociology</b> is the study of human population dynamics and statistics. |


#### Scientists as Citizens, Citizens as Scientists

- Studying our environment is vital to maintaining a healthy and productive society
- Environmental scientists are often asked to share their research with the world
- Observations of nonscientists are the first steps toward addressing an environmental problem (ex: citizen science)



#### Our Environment Through Time


- Wherever humans have hunted, grown food, or settled, they have changed the environment
- Manhattan (map on next slide: environment change over time)

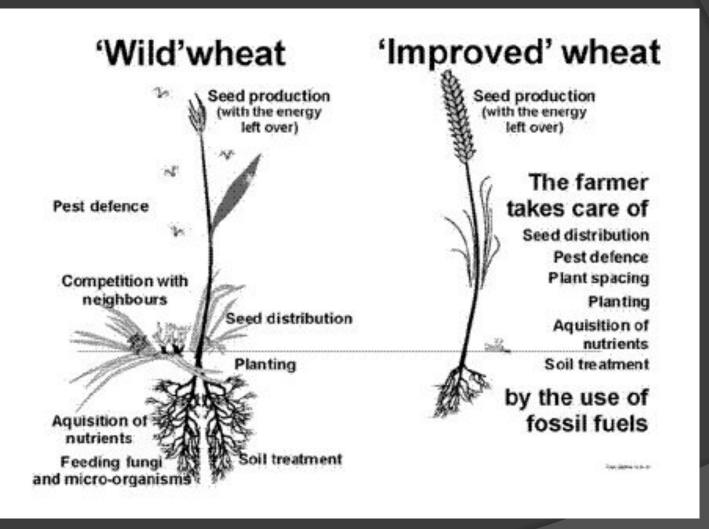


#### Hunter-Gatherers

- Hunter-gatherers are people who obtain food by collecting plants and by hunting wild animals or scavenging their remains.
- Hunter-gatherers affect their environment in many ways:
  - 1) Native American tribes hunted horses.
  - 2) The tribes also set fires to burn prairies and prevent the growth of trees. This left the prairie as an open grassland ideal for hunting bison.
  - 3) Species endangered (bison, cave bears, saber tooth tigers)






© Photos.com / Photos.com / Thinkstock

- Agriculture is the raising of crops and livestock for food or for other products that are useful to humans
- Started in many different parts of the world over 10,000 years ago
- Dramatic impact on human societies and their environment
- Allowed human population to stay the same

#### World Population (est.) 10,000 BC - 2,000 AD



- Changed the food we eat
- The plants we grow and eat today are descended from domesticated plants
- During harvest season farmers collected seeds from plants that exhibited the qualities they desired, such as large kernels
- These seeds were then planted and harvested again = evolution of domesticated plants



- Many habitats were destroyed as grasslands, forests, and wetlands were replaced with farmland
- Replacing forest with farmland on a large scale can cause soil loss, floods, and fresh water surplus.

- The slash-and-hack technique was one of the earliest ways that land was converted to farmland
- Much of this converted land was poorly farmed and is no longer fertile



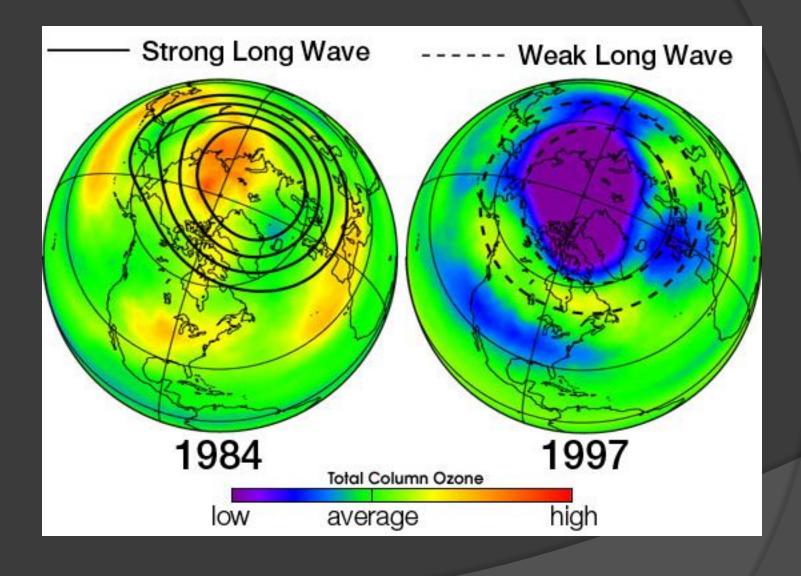
# The Industrial Revolution

- The Industrial Revolution involved a shift from energy sources such as animals and running water to renewable fuels such as coal and oil
- Use of fossil fuels = increased efficiency
  - Motorized vehicles allowed food to be transported cheaply across shorter distances.



# Improving the Quality of Life

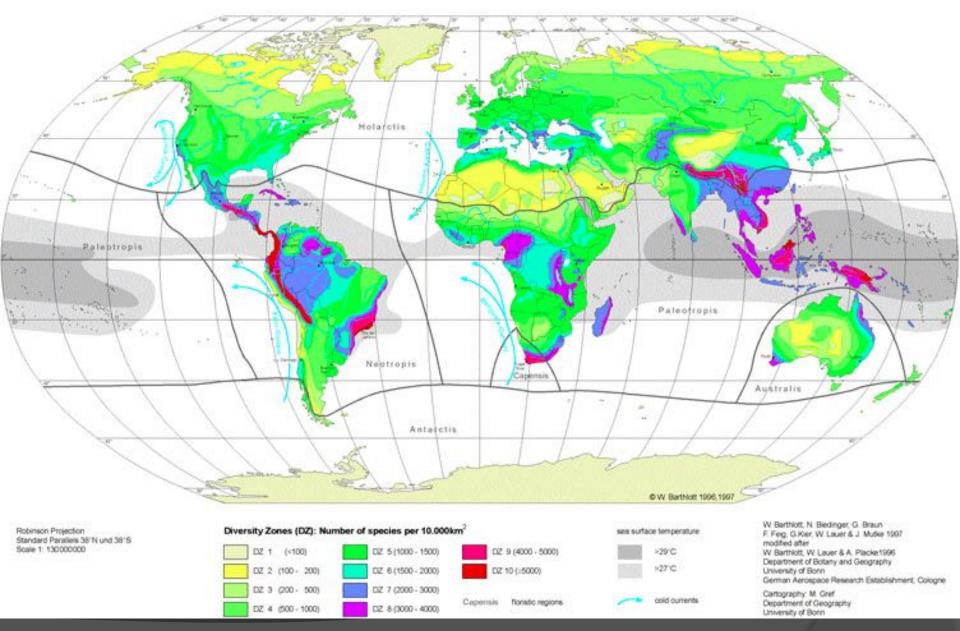
- Large population growth
- The industrial Revolution introduced many positive changes such as the light bulb
- Agricultural productivity decreased, and sanitation, nutrition, and medical care vastly improved


# Improving the Quality of Life

- Industrial Revolution introduced many new environmental problems
  - Pollution
  - Habitat loss
  - cleaner air & water sources
- We now have materials such as plastics, artificial pesticides, and fertilizers
  - Cause problems for us nowadays



# Spaceship Earth


- Earth can be compared to a spaceship traveling through space as it cannot dispose of its waste or take on new supplies
- Earth is essentially a open system
  - Energy from the sun enters
  - Heat leaves
  - All other materials are cycled
    - Limited resources



#### What are our Main Environmental Problems?

- Environmental problems can generally be grouped into three categories:
  - 1) Resource Depletion
  - 2) Pollution
  - 3) Loss of Biodiversity

#### GLOBAL BIODIVERSITY: SPECIES NUMBERS OF VASCULAR PLANTS



#### **Resource Depletion**

- Natural Resources are any natural materials that are used by humans, such as, water, petroleum, minerals, forests, and animals
  - Can be renewable or nonrenewable
    - Renewable resources can be replaced relatively quickly by natural process. (ex: oil)
    - Nonrenewable resources form at a much slower rate than they are consumed (millions of years) (ex:wind)



# Pollution

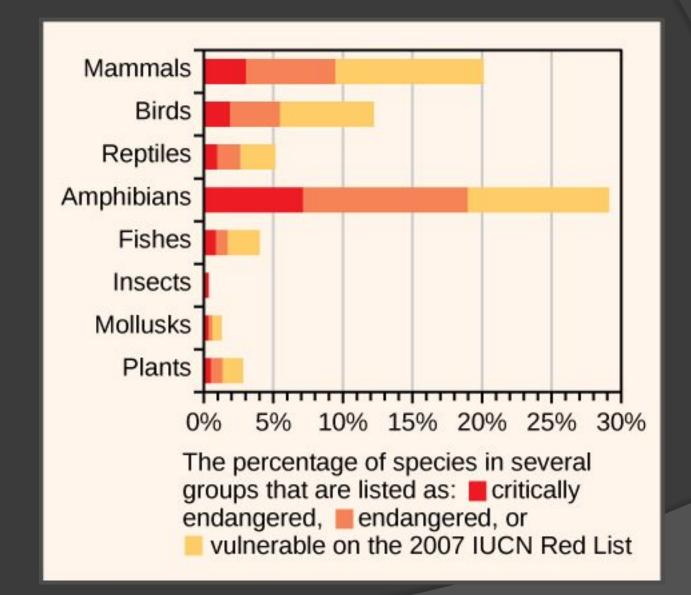
- Pollution is an undesirable change in the natural environment
  - caused by the introduction of substances that are healthy to living organisms
- Much of the pollution that troubles us today is produced by human activities and the accumulation of wastes.



# Pollution

- There are two main types of pollutants:
  - Biodegradable pollutants, which can be broken down by natural processes and include materials such as mercury
  - Nondegradable pollutants, which cannot be broken down by natural processes and include materials such as newspaper

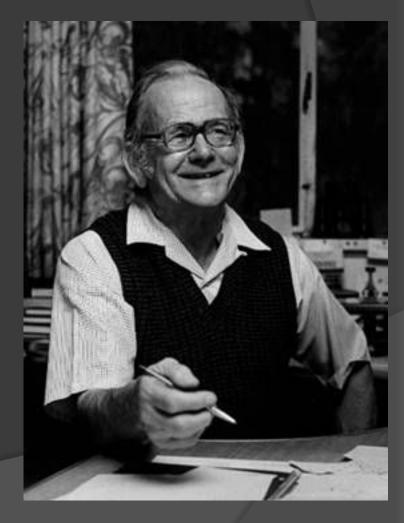



#### Loss of Biodiversity

- Biodiversity (several definitions)
  - the variety of organisms in a given area
  - the genetic variation within a population
  - the variety of species in a community
  - the variety of communities in an ecosystem



# Loss of Biodiversity


- all the species that once roamed the Earth are alive today
- Scientists think that if the current extinction rates continue, it may cause problems for the human population
- Problems with species going extinct?
- Effects ecosystems, especially if keystone species



#### "The Tragedy of the Commons"

#### Garrett Johnson

- The main difficulty in solving environmental problems is the conflict between the short-term interests of the individual and the long-term welfare of society
- What to do with areas of land that belong to the community?



#### "The Tragedy of the Commons"

- Put as many animals on the land as possible
- If too many animals grazed on the commons, they destroyed the grass
- Once the grass was destroyed, everyone flourished because no one could raise animals on the commons



#### "The Tragedy of the Commons"

- The commons were eventually replaced by closed fields owned by individuals
- Owners learned to be careful with land management
- Someone or some group must take responsibility for maintaining a resource or it will become depleted

#### "The Tragedy of the Commons"

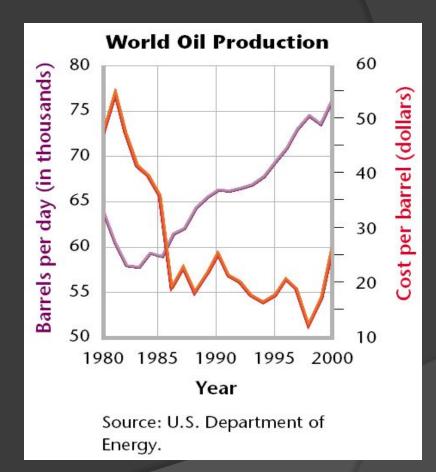


# The Tragedy of the Commons

Garrett James Hardin (1915 – 2003) was an American ecologist and scientist who warned of the dangers of overpopulation.

Known for Hardin's First Law of Human Ecology: "You cannot do only one thing". This expresses the interconnectedness of every action.




"A finite world can support only a finite population; therefore, population growth must eventually equal zero."

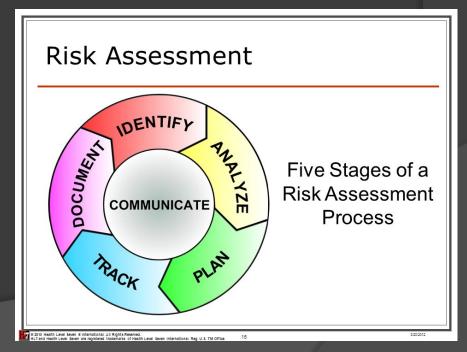
Garrett Hardin

The Tragedy of the Commons - By Garrett Hardin

# Supply and Demand

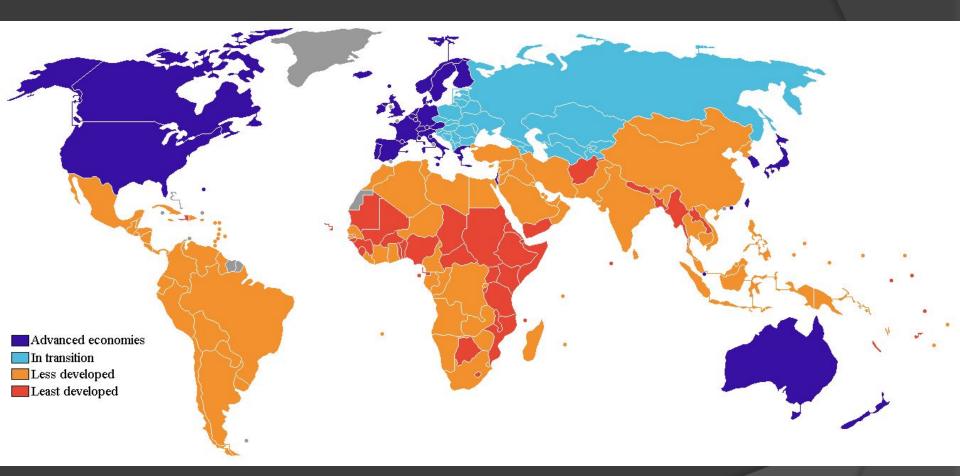
- The Law of Supply and **Demand** states as the demand for a good or service increases, the value or the food or service also decreases
- Ex: Oil production




### **Costs and Benefits**

- Cost-benefit analysis balances the cost of the action against the benefits one expects from it
- The results depend on who is doing the analysis.
- Often, environmental regulations are passed on to the consumer or taxpayer




#### Risk Assessment

- One of the costs of any action is the risk of an undesirable outcome
- Risk analysis helps us create cost effective ways to protect our health and environment



#### Developed and Developing Countries

- Developed countries have higher incomes, slower population growth, diverse industrial economies, and stronger social support (ex: Malaysia)
- Developing countries have lower average incomes, simple agriculture-based communities, and rapid population growth (ex: canada, US)



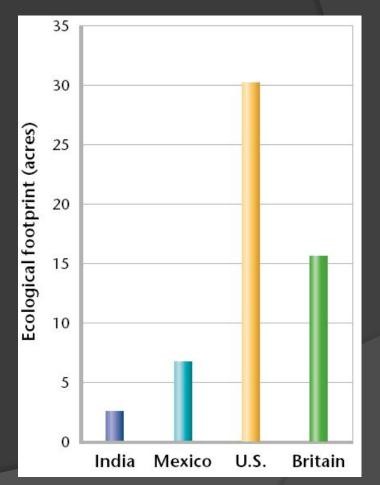
#### Population and Consumption

- Almost all environmental problems can be traced back to two root causes:
  - The human population in some areas is growing too quickly for the local environment to support.
  - People are using up, wasting, or polluting many natural resources faster than they can be renewed, replaced, or cleaned up.

2 Less is more Size of circle is proportional Fertility vs GDP, 2007 to country's population 8 0 7 00 0 6 o . 0( 5 Fertility rate ō Mauritius 4 Ghan India 0 0. 3 0 United States . REPLACEMENT 0 2 0 FERTILITY LEVEL: 2.1 Bangladesh 00000000000 dO China Indonesia Brazil South Korea Iran 0 200 400 1,000 2,000 4,000 10,000 40,000 90,000 GDP per person, inflation adjusted, \$, log scale

Source: gapminder.org

### **Consumption Trends**


- Developed countries are using much less of Earth's resources
- Developed nations use about 75 percent of the world's resources, although they make up only 20 percent of the world's population
- This rate of consumption creates more waste and pollution per person then in developing countries

# **Consumption Trends**

| Indicators of Development for the United States, Japan, Mexico, and Indonesia |                                                                |          |          |         |           |
|-------------------------------------------------------------------------------|----------------------------------------------------------------|----------|----------|---------|-----------|
|                                                                               | Measurement                                                    | U.S.     | Japan    | Mexico  | Indonesia |
| Health                                                                        | life expectancy in years                                       | 77       | 81       | 71.5    | 68        |
| Population<br>growth                                                          | per year                                                       | 0.8%     | 0.2%     | 1.7%    | 1.8%      |
| Wealth                                                                        | gross national product per person                              | \$29,240 | \$32,350 | \$3,840 | \$640     |
| Living space                                                                  | people per square mile                                         | 78       | 829      | 133     | 319       |
| Energy use                                                                    | per person per year (Btu)                                      | 351      | 168      | 59      | 18        |
| Pollution                                                                     | carbon dioxide from fossil<br>fuels per person per year (tons) | 20.4     | 9.3      | 3.5     | 2.2       |
| Waste                                                                         | garbage produced per person per year (kg)                      | 720      | 400      | 300     | 43        |

# **Ecological handprints**

 Ecological handprintscalculations that show the productive area of Earth needed to support one person in a particular country



# Critical Thinking and the Environment

- Remember a few things as you explore environmental science further:
  - Be prepared to listen to many viewpoints over a particular issue
  - Investigate the source of the information you encounter
  - Gather all the information you can before drawing a conclusion



### A Sustainable World

- Sustainability is the condition in which human needs are met in such a way that a human population can survive short term
- Sustainability is a key goal of environmental science
- Our current world and way of life is not sustainable